7 research outputs found

    Torsional Sensor Applications in Two-Phase Fluids

    Get PDF
    A solid corrosion-resistant torsional waveguide of diamond cross section has been developed to sense on-line and in real-time the characteristics of the liquid in which it is submerged. The sensor can measure, among other things, the liquid content of a bubbly medium; the density of adjacent pure liquids; the equivalent density of liquid-vapor mixtures or particulate suspensions; a suspension\u27s concentration; and the liquid level. The sensor exploits the phenomenon that the speed of propagation of a torsional stress wave in a submerged waveguide with a noncircular cross section is inversely proportional to the equivalent density of the liquid in which the waveguide is submerged. The sensor may be used to conduct measurements along distances ranging from 20 mm to 20 m and over a wide range of temperatures and pressures, e.g., from the cryogenic temperature of liquid nitrogen, -196°C, up to hot pressurized water at 300°C and 7 MPa. A self-calibrating three-zone sensor and associated electronics have also been developed to compensate for any sensor inaccuracies due to operation over a wide range of temperature. In some of the water experiments at room temperature, unexpected attenuation of the guided torsional waves was observed. This excess attenuation depends in part on the waveguide\u27s surface finish. It appears to be caused by air microbubbles adhering to the waveguide, imposing one of the practical limits on the maximum sensor length in nondegassed or aerated water

    Hepatocellular Carcinoma in the Woodchuck Model of Hepatitis B Virus Infection

    Get PDF
    The Eastern woodchuck (Marmota monax) harbors a DNA virus (Woodchuck hepatitis virus [WHV]) that is similar in structure and replicative life cycle to the human hepatitis B virus (HBV). Like HBV, WHV infects the liver and can cause acute and chronic hepatitis. Furthermore, chronic WHV infection in woodchucks usually leads to development of hepatocellular carcinoma (HCC) within the first 2–4 years of life. The woodchuck model has been important in the preclinical evaluation of safety and efficacy of the antiviral drugs now in use for treatment of HBV infection and continues to serve as an important, predictive model for innovative forms of therapy of hepatitis B using antiviral nucleosides and immune response modifiers alone or in combination. Almost all woodchucks that become chronic WHV carriers after experimental neonatal inoculation develop HCC with a median HCC-free survival of 24 months and a median life expectancy of 30–32 months. The woodchuck model of viral induced HCC has been used effectively for the development of new imaging agents for enhancement of detection of hepatic neoplasms by ultrasound and magnetic resonance imaging. The chemoprevention of HCC using long-term antiviral nucleoside therapy has been shown in the woodchuck, and “proof of principal” has been established for some of the innovative, molecular methods for treatment of HCC. The model is available for fundamental investigations of the viral and molecular mechanisms responsible for hepatocarcinogenesis and should have substantial value for future development of innovative methods for chemoprevention and gene therapy of human HCC

    Antiviral Activities of Novel 5-Phosphono-Pent-2-en-1-yl Nucleosides and Their Alkoxyalkyl Phosphonoesters

    No full text
    Three acyclic nucleoside phosphonates are currently approved for clinical use against infections caused by cytomegalovirus (Vistide), hepatitis B virus (Hepsera), and human immunodeficiency virus type 1 (Viread). This important antiviral class inhibits viral polymerases after cellular uptake and conversion to their diphosphates, bypassing the first phosphorylation, which is required for conventional nucleoside antivirals. Small chemical alterations in the acyclic side chain lead to marked differences in antiviral activity and the spectrum of activity of acyclic nucleoside phosphonates against various classes of viral agents. We synthesized a new class of acyclic nucleoside phosphonates based on a 5-phosphono-pent-2-en-1-yl base motif in which the oxygen heteroatom usually present in acyclic nucleoside phosphonates has been replaced with a double bond. Since the intrinsic phosphonate moiety leads to low oral bioavailability and impaired cellular penetration, we also prepared the hexadecyloxypropyl esters of the 5-phosphono-pent-2-en-1-yl nucleosides. Our earlier work showed that this markedly increases antiviral activity and oral bioavailability. Although the 5-phosphono-pent-2-en-1-yl nucleosides themselves were not active, the hexadecyloxypropyl esters were active against DNA viruses and hepatitis B virus, in vitro. Notably, the hexadecyloxypropyl ester of 9-(5-phosphono-pent-2-en-1-yl)-adenine was active against hepatitis B virus mutants resistant to lamivudine, emtricitabine, and adefovir

    Evaluation of Hexadecyloxypropyl-9-R-[2-(Phosphonomethoxy)Propyl]- Adenine, CMX157, as a Potential Treatment for Human Immunodeficiency Virus Type 1 and Hepatitis B Virus Infectionsâ–ż

    No full text
    9-R-[2-(Phosphonomethoxy)propyl]-adenine (tenofovir) is an acyclic nucleoside phosphonate with antiviral activity against human immunodeficiency virus type 1 (HIV-1) and hepatitis B virus (HBV). Tenofovir is not orally bioavailable but becomes orally active against HIV-1 infection as the disoproxil ester (tenofovir disoproxil fumarate [Viread]). We have developed an alternative strategy for promoting the oral availability of nucleoside phosphonate analogs which involves esterification with a lipid to form a lysolecithin mimic. This mimic can utilize natural lysolecithin uptake pathways in the gut, resulting in high oral availability. Since the mimic is not subject to cleavage in the plasma by nonspecific esterases, it remains intact in the circulation and facilitates uptake by target cells. Significant drops in apparent antiviral 50% effective concentrations (EC50s) of up to 3 logs have been observed in comparison with non-lipid-conjugated parent compounds in target cells. We have applied this technology to tenofovir with the goal of increasing oral availability, decreasing the apparent EC50, and decreasing the potential for nephrotoxicity by reducing the exposure of the kidney to the free dianionic tenofovir. Here we report that, in vitro, the hexadecyloxypropyl ester of tenofovir, CMX157, is 267-fold more active than tenofovir against HIV-1 and 4.5-fold more active against HBV. CMX157 is orally available and has no apparent toxicity when given orally to rats for 7 days at doses of 10, 30, or 100 mg/kg/day. Consequently, CMX157 represents a second-generation tenofovir analog which may have an improved clinical profile
    corecore